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Introduction: The 3D stack-of-rings non-Cartesian k-space trajectory, based on the 
2D concentric rings [1−5], enables robust and time-efficient magnetization-prepared 
imaging due to its unique circularly symmetric sampling nature [4, 5]. At the same 
time, this circular symmetry enables a time-efficient retracing acquisition that can 
resolve off-resonance effects and perform fat/water separation [3−5]. In this work, we 
present an efficient parallel imaging strategy for the 3D stack-of-rings trajectory to 
further enhance its flexible trade-offs between image quality and scan time. Non-
Cartesian sampling and parallel imaging [6−8] are two complementary acceleration 
methods; combining the two can potentially enable a great reduction in scan time. 
However, the general problem of performing parallel imaging with an arbitrary 
sampling trajectory is computationally demanding [7]. Once again, due to its distinct 
geometry, parallel imaging reconstruction for the 3D stack-of-rings trajectory can be 
decomposed directly into a series of 2D Cartesian sub-problems, which can be solved 
very efficiently. Our approach thus combines the acceleration from both non-Cartesian 
sampling and parallel imaging in an efficient and easily deployable algorithm.  
Methods: The 3D stack-of-rings trajectory encodes (kx, ky) with a set of 2D concentric 
rings and covers kz with conventional slice encoding, already enabling a 2-fold scan-
time reduction with respect to 3D Cartesian encoding [1−5]. In addition, efficient 
parallel imaging reconstruction is possible for the 3D stack of rings by recognizing 
that the dataset can be reformatted as a collection of “spoke-planes” (Fig. 1a) which 
cut through the rings acquisition along full-diameter spokes and contains data points 
that lie directly on 2D Cartesian grids. Parallel imaging reconstruction for the 3D stack 
of rings can thus be decomposed directly into a series of fast 2D Cartesian 
reconstructions for each spoke-plane. After the missing data points are filled out for 
each spoke-plane and coil [8], a Fourier transform is taken along kz, followed by a 
series of 2D gridding reconstructions for each (kx, ky)-plane. Data from 
multiple coils are combined using a sum-of-squares approach.  
Experiments: Setup: 3D head scans were performed on a GE Signa 1.5 T 
Excite system using an 8-channel head coil. The FOV was 24x24x18 cm3 and 
matrix size was 240x240x180 (120 rings of 472 samples/2π in (kx, ky)). Each 
ring was acquired over 3 revolutions to enable fat/water separation [3−5]. 
Spherical coverage was implemented (Fig. 1b) [5] and this 3D stack-of-rings 
trajectory was incorporated into an IR-SPGR sequence that produced high 
white/gray matter contrast [4, 5]. Total scan time for the fully-sampled dataset 
was 7 min. This dataset was reformatted as 236 spoke-planes of 239x180 
points each and retrospectively undersampled with a checkerboard pattern of 
reduction factor R = 2 (Fig. 1b). GRAPPA-based reconstruction [8] was 
performed for each spoke-plane using a fully-sampled central region of 17 
rings x 32 slices (33x32 in each spoke-plane) for calibration and a 5x5 
interpolation kernel. Results: Shown in Fig. 2 are representative head images 
(water images) obtained by using a fully-sampled reconstruction (Fig. 2a), a 
zero-filled reconstruction of the undersampled dataset (Fig. 2b), and by using 
the proposed parallel imaging reconstruction algorithm for the undersampled 
dataset (Fig. 2c). Aliasing is seen in the zero-filled reconstructions, while the 
parallel imaging reconstructions exhibits minimal residual aliasing and closely 
match the fully-sampled reconstructions.   
Discussion: The 3D stack-of-rings trajectory has a distinct sampling geometry 
that allows its parallel imaging reconstruction to be broken down into a series 
of fast 2D Cartesian calculations. Experimental results demonstrate that a 2-
fold acceleration in scan time (R = 2) can be achieved on top of the 2-fold time 
savings inherently offered by the rings. This means that the fat-water-separated 
3D head scan would only take 3.5 minutes. In addition to the uniform undersampling example shown, it may be possible to design the 3D stack-of-
rings undersampling pattern to fully utilize coil sensitivity encoding in all three spatial dimensions. While the spoke-plane decomposition enables a 
fast reconstruction, the azimuthal neighbors on multiple spoke-planes currently are not used to estimate missing data. In the future, we will compare 
our current approach to a fully 3D parallel imaging reconstruction method and explore higher undersampling reduction factors.  
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Fig. 1. (a) Parallel imaging reconstruction for the 3D stack of rings can
be broken down into a series of 2D Cartesian problems for “spoke-
planes” that cut through the rings along a full-diameter spoke (kd). Data
points lie directly on a 2D Cartesian grid in each spoke-plane. (b) For
our experiments, the 3D stack of rings are acquired with spherical
coverage in k-space. An R = 2 checkerboard undersampling pattern
with calibration region (black: sampled) is applied retrospectively to
demonstrate parallel imaging reconstruction. 

Fig. 2. Representative axial, coronal, and sagittal cuts from the same 3D head
scan using (a) fully sampled reconstruction, (b) undersampling with zero-filled
reconstruction, and (c) undersampling with parallel imaging reconstruction. 


