

Multi-Phase Coronary Magnetic Resonance Angiography **Using a 3D Cones Trajectory**

Holden H. Wu^{1,2}, Bob S. Hu^{2,3}, Dwight G. Nishimura², and Michael V. McConnell^{1,2}

Introduction

<u>3D whole-heart free-breathing coronary MR angiography (MRA):</u>

- + Simplifies prescription effort
- + Requires less patient cooperation
- + Supports retrospective reformats at arbitrary planes
- *but* Requires longer scan times
 - Must account for respiratory and cardiac motion

We present a new whole-heart coronary MRA technique based on:

- 1. The 3D cones readout trajectory [1, 2]
 - to *reduce the scan time 3-fold* (compared to 3D Cartesian encoding)
- and *improve robustness to motion/flow* 2. 2D "navigator images"

Results

Reformatted thin-slab MIPs from a normal volunteer scan:

Before respiratory motion correction: <u>After</u> 2D respiratory motion correction:

• The LM, LAD, and LCx are already recognizable before respiratory motion

- acquired directly through the heart to *track S/I & A/P respiratory motion* 3. Resolving multiple cardiac phases
 - to <u>allow retrospective selection of the best phase(s)</u> for visualizing each coronary segment

Methods

Acquisition:

• GE Signa 1.5 T Excite system; 8-channel cardiac coil; Axial slab. • FOV = 28x28x14 cm³; Resolution = 1.2x1.2x1.25 mm³; 9142 cone readouts. • Total scan time of <u>508 HBs</u> (~7 min at 72 bpm).

• 2D sagittal slices through the left ventricle track S/I & A/P respiratory translation.

- correction due to the inherent robustness of cones.
- 2D respiratory motion correction substantially improves image quality.

Selected reformats at the 3 fully resolved 100-ms cardiac phases:

\mathbf{S}^{\prime}

solid blue: leading NAV, dashed red: trailing NAV

IMG: 3D cones, 18 TRs, ATR-SSFP TE / TR₁ / TR₂ = 0.57 / 4.37 / 1.15 ms, FA = 60° **C**: 10 cosine-ramp-weighted catalyzation TRs

• Alternating-TR (ATR) SSFP [3] provides steady-state fat suppression and blood*myocardium contrast.*

Reconstruction:

- S/I & A/P translation are estimated for each cone readout by linear interpolation between the leading/trailing NAVs within each heartbeat.
- <u>All readouts</u> are corrected for translation and used in gridding reconstruction. • Multiple cardiac phases are reconstructed, with the option of sliding window re-

- For this subject, the RCA is best visualized in early diastole (phase 1) and becomes blurred in late diastole (phase 3).
- The LM, LAD, and LCx have longer rest periods and are best visualized in mid-diastole (phase 2), but also become blurred in late diastole (phase 3).

Discussion

- 3D cones reduce scan time 3-fold vs. 3D Cartesian encoding and provide greater robustness to motion/flow effects.
- "Navigator images" directly track 2D respiratory motion of the heart and enable robust compensation with <u>100% respiratory efficiency</u>.
- Resolving multiple cardiac phases provides robustness to the initial choice of TD and subsequent heart-rate variations. Such a dataset can support retrospective selection of the best cardiac phase(s) for visualization, which may be different for each coronary segment [4].

References

[1] Gurney PT, et al., MRM 2006; 55: 575-582. [2] Gurney PT, PhD Thesis, Stanford University, 2007.

[3] Leupold J, et al., MRM 2006; 55: 557-565.

construction of intermediate cardiac phases.

